Class MatrixOps

• ```public final class MatrixOps
extends Object```
Utility class of basic linear algebra matrix operations, where matrices are represented as 2-D Java arrays.
• Method Summary

All Methods
Modifier and Type Method Description
`static double[][]` ```difference​(double[][] A, double[][] B)```
Computes C = A - B.
`static double[][]` ```difference​(double[][] A, double[][] B, double[][] C)```
Computes C = A - B.
`static int[][]` ```difference​(int[][] A, int[][] B)```
Computes C = A - B.
`static int[][]` ```difference​(int[][] A, int[][] B, int[][] C)```
Computes C = A - B.
`static double[][]` ```product​(double[][] A, double[][] B)```
Computes C = A * B.
`static double[][]` ```product​(double[][] A, double[][] B, double[][] C)```
Computes C = A * B.
`static int[][]` ```product​(int[][] A, int[][] B)```
Computes C = A * B.
`static int[][]` ```product​(int[][] A, int[][] B, int[][] C)```
Computes C = A * B.
`static double[][]` ```sum​(double[][] A, double[][] B)```
Computes C = A + B.
`static double[][]` ```sum​(double[][] A, double[][] B, double[][] C)```
Computes C = A + B.
`static int[][]` ```sum​(int[][] A, int[][] B)```
Computes C = A + B.
`static int[][]` ```sum​(int[][] A, int[][] B, int[][] C)```
Computes C = A + B.
`static double[][]` `transposeSquareMatrixInline​(double[][] matrix)`
Transpose a square matrix inline.
`static int[][]` `transposeSquareMatrixInline​(int[][] matrix)`
Transpose a square matrix inline.
• Methods inherited from class java.lang.Object

`clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait`
• Method Detail

• transposeSquareMatrixInline

`public static int[][] transposeSquareMatrixInline​(int[][] matrix)`
Transpose a square matrix inline.
Parameters:
`matrix` - the matrix to transpose, with result replacing contents of matrix.
Returns:
The matrix is returned for convenience for passing to other methods requiring a matrix as parameter. It is the same object reference that was passed as a parameter.
• transposeSquareMatrixInline

`public static double[][] transposeSquareMatrixInline​(double[][] matrix)`
Transpose a square matrix inline.
Parameters:
`matrix` - the matrix to transpose, with result replacing contents of matrix.
Returns:
The matrix is returned for convenience for passing to other methods requiring a matrix as parameter. It is the same object reference that was passed as a parameter.
• sum

```public static int[][] sum​(int[][] A,
int[][] B,
int[][] C)```
Computes C = A + B.
Parameters:
`A` - matrix
`B` - matrix
`C` - if C is null then a new matrix is constructed for result, otherwise C is used for result.
Returns:
A reference to the C matrix.
• sum

```public static double[][] sum​(double[][] A,
double[][] B,
double[][] C)```
Computes C = A + B.
Parameters:
`A` - matrix
`B` - matrix
`C` - if C is null then a new matrix is constructed for result, otherwise C is used for result.
Returns:
A reference to the C matrix.
• sum

```public static int[][] sum​(int[][] A,
int[][] B)```
Computes C = A + B.
Parameters:
`A` - matrix
`B` - matrix
Returns:
A reference to a new matrix C containing the sum.
• sum

```public static double[][] sum​(double[][] A,
double[][] B)```
Computes C = A + B.
Parameters:
`A` - matrix
`B` - matrix
Returns:
A reference to a new matrix C containing the sum.
• difference

```public static int[][] difference​(int[][] A,
int[][] B,
int[][] C)```
Computes C = A - B.
Parameters:
`A` - matrix
`B` - matrix
`C` - if C is null then a new matrix is constructed for result, otherwise C is used for result.
Returns:
A reference to the C matrix.
• difference

```public static double[][] difference​(double[][] A,
double[][] B,
double[][] C)```
Computes C = A - B.
Parameters:
`A` - matrix
`B` - matrix
`C` - if C is null then a new matrix is constructed for result, otherwise C is used for result.
Returns:
A reference to the C matrix.
• difference

```public static int[][] difference​(int[][] A,
int[][] B)```
Computes C = A - B.
Parameters:
`A` - matrix
`B` - matrix
Returns:
A reference to a new matrix C containing the difference.
• difference

```public static double[][] difference​(double[][] A,
double[][] B)```
Computes C = A - B.
Parameters:
`A` - matrix
`B` - matrix
Returns:
A reference to a new matrix C containing the difference.
• product

```public static int[][] product​(int[][] A,
int[][] B,
int[][] C)```
Computes C = A * B.
Parameters:
`A` - matrix
`B` - matrix
`C` - if C is null then a new matrix is constructed for result, otherwise C is used for result.
Returns:
A reference to the C matrix.
• product

```public static double[][] product​(double[][] A,
double[][] B,
double[][] C)```
Computes C = A * B.
Parameters:
`A` - matrix
`B` - matrix
`C` - if C is null then a new matrix is constructed for result, otherwise C is used for result.
Returns:
A reference to the C matrix.
• product

```public static int[][] product​(int[][] A,
int[][] B)```
Computes C = A * B.
Parameters:
`A` - matrix
`B` - matrix
Returns:
A reference to a new matrix C containing the product.
• product

```public static double[][] product​(double[][] A,
double[][] B)```
Computes C = A * B.
Parameters:
`A` - matrix
`B` - matrix
Returns:
A reference to a new matrix C containing the product.